OpenJ_POJ C16D Extracurricular Sports 找规律、大整数类

ProLightsfx 2017-5-4 109 5/4
A - 莽撞人 找规律、大整数类

Source

UESTC 2016 Summer Training #14 Div.2

OpenJ_POJ C16D

 

My Solution

做这种题感觉比较碰运气(水平不够, 所以比较看运气了)

这个是找规律的, 写几组然后看看

所有数的最大公倍数 == 所有数的和

1 2 3

1 2 6 9

1 2 6 18 27

这里前 n - 1个数是 1 2 6 18 这样 以3为公比增加的, 然后每个n 对应的最后一个数 是 3^n次

然后套一个大整数类的版就好啦

这个大整数类的版很棒的

 

#include 
#include 
#include 
#include 
#include 
#include 
#include 

#define MAX_L 2005 //最大长度,可以修改
using namespace std;

class bign
{
public:
    int len, s[MAX_L];//数的长度,记录数组
//构造函数
    bign();
    bign(const char*);
    bign(int);
    bool sign;//符号 1正数 0负数
    string toStr() const;//转化为字符串,主要是便于输出
    friend istream& operator>>(istream &,bign &);//重载输入流
    friend ostream& operator<<(ostream &,bign &);//重载输出流 //重载复制 bign operator=(const char*); bign operator=(int); bign operator=(const string); //重载各种比较 bool operator>(const bign &) const;
    bool operator>=(const bign &) const;
    bool operator<(const bign &) const;
    bool operator<=(const bign &) const; bool operator==(const bign &) const; bool operator!=(const bign &) const; //重载四则运算 bign operator+(const bign &) const; bign operator++(); bign operator++(int); bign operator+=(const bign&); bign operator-(const bign &) const; bign operator--(); bign operator--(int); bign operator-=(const bign&); bign operator*(const bign &)const; bign operator*(const int num)const; bign operator*=(const bign&); bign operator/(const bign&)const; bign operator/=(const bign&); //四则运算的衍生运算 bign operator%(const bign&)const;//取模(余数) bign factorial()const;//阶乘 bign Sqrt()const;//整数开根(向下取整) bign pow(const bign&)const;//次方 //一些乱乱的函数 void clean(); ~bign(); }; #define max(a,b) a>b ? a : b
#define min(a,b) a>(istream &in, bign &num)
{
    string str;
    in>>str;
    num=str;
    return in;
}

ostream &operator<<(ostream &out, bign &num)
{
    out<<num.toStr();
    return out;
}

bign bign::operator=(const char *num)
{
    memset(s, 0, sizeof(s));
    char a[MAX_L] = "";
    if (num[0] != '-')
        strcpy(a, num);
    else
        for (int i = 1; i < strlen(num); i++)
            a[i - 1] = num[i];
    sign = !(num[0] == '-');
    len = strlen(a);
    for (int i = 0; i < strlen(a); i++)
        s[i] = a[len - i - 1] - 48;
    return *this;
}

bign bign::operator=(int num)
{
    if (num < 0)
        sign = 0, num = -num;
    else
        sign = 1;
    char temp[MAX_L];
    sprintf(temp, "%d", num);
    *this = temp;
    return *this;
}

bign bign::operator=(const string num)
{
    const char *tmp;
    tmp = num.c_str();
    *this = tmp;
    return *this;
}

bool bign::operator<(const bign &num) const
{
    if (sign^num.sign)
        return num.sign;
    if (len != num.len)
        return len < num.len; for (int i = len - 1; i >= 0; i--)
        if (s[i] != num.s[i])
            return sign ? (s[i] < num.s[i]) : (!(s[i] < num.s[i])); return !sign; } bool bign::operator>(const bign&num)const
{
    return num < *this;
}

bool bign::operator<=(const bign&num)const { return !(*this>num);
}

bool bign::operator>=(const bign&num)const
{
    return !(*this<num); } bool bign::operator!=(const bign&num)const { return *this > num || *this < num;
}

bool bign::operator==(const bign&num)const
{
    return !(num != *this);
}

bign bign::operator+(const bign &num) const
{
    if (sign^num.sign)
    {
        bign tmp = sign ? num : *this;
        tmp.sign = 1;
        return sign ? *this - tmp : num - tmp;
    }
    bign result;
    result.len = 0;
    int temp = 0;
    for (int i = 0; temp || i < (max(len, num.len)); i++)
    {
        int t = s[i] + num.s[i] + temp;
        result.s[result.len++] = t % 10;
        temp = t / 10;
    }
    result.sign = sign;
    return result;
}

bign bign::operator++()
{
    *this = *this + 1;
    return *this;
}

bign bign::operator++(int)
{
    bign old = *this;
    ++(*this);
    return old;
}

bign bign::operator+=(const bign &num)
{
    *this = *this + num;
    return *this;
}

bign bign::operator-(const bign &num) const
{
    bign b=num,a=*this;
    if (!num.sign && !sign)
    {
        b.sign=1;
        a.sign=1;
        return b-a;
    }
    if (!b.sign)
    {
        b.sign=1;
        return a+b;
    }
    if (!a.sign)
    {
        a.sign=1;
        b=bign(0)-(a+b);
        return b;
    }
    if (a<b)
    {
        bign c=(b-a);
        c.sign=false;
        return c;
    }
    bign result;
    result.len = 0;
    for (int i = 0, g = 0; i < a.len; i++)
    {
        int x = a.s[i] - g;
        if (i < b.len) x -= b.s[i]; if (x >= 0) g = 0;
        else
        {
            g = 1;
            x += 10;
        }
        result.s[result.len++] = x;
    }
    result.clean();
    return result;
}

bign bign::operator * (const bign &num)const
{
    bign result;
    result.len = len + num.len;

    for (int i = 0; i < len; i++)
        for (int j = 0; j < num.len; j++)
            result.s[i + j] += s[i] * num.s[j];

    for (int i = 0; i < result.len; i++)
    {
        result.s[i + 1] += result.s[i] / 10;
        result.s[i] %= 10;
    }
    result.clean();
    result.sign = !(sign^num.sign);
    return result;
}

bign bign::operator*(const int num)const
{
    bign x = num;
    bign z = *this;
    return x*z;
}
bign bign::operator*=(const bign&num)
{
    *this = *this * num;
    return *this;
}

bign bign::operator /(const bign&num)const
{
    bign ans;
    ans.len = len - num.len + 1;
    if (ans.len < 0) { ans.len = 1; return ans; } bign divisor = *this, divid = num; divisor.sign = divid.sign = 1; int k = ans.len - 1; int j = len - 1; while (k >= 0)
    {
        while (divisor.s[j] == 0) j--;
        if (k > j) k = j;
        char z[MAX_L];
        memset(z, 0, sizeof(z));
        for (int i = j; i >= k; i--)
            z[j - i] = divisor.s[i] + '0';
        bign dividend = z;
        if (dividend < divid) { k--; continue; }
        int key = 0;
        while (divid*key <= dividend) key++;
        key--;
        ans.s[k] = key;
        bign temp = divid*key;
        for (int i = 0; i < k; i++)
            temp = temp * 10;
        divisor = divisor - temp;
        k--;
    }
    ans.clean();
    ans.sign = !(sign^num.sign);
    return ans;
}

bign bign::operator/=(const bign&num)
{
    *this = *this / num;
    return *this;
}

bign bign::operator%(const bign& num)const
{
    bign a = *this, b = num;
    a.sign = b.sign = 1;
    bign result, temp = a / b*b;
    result = a - temp;
    result.sign = sign;
    return result;
}

bign bign::pow(const bign& num)const
{
    bign result = 1;
    for (bign i = 0; i < num; i++)
        result = result*(*this);
    return result;
}

bign bign::factorial()const
{
    bign result = 1;
    for (bign i = 1; i <= *this; i++) result *= i; return result; } void bign::clean() { if (len == 0) len++; while (len > 1 && s[len - 1] == '�')
        len--;
}

bign bign::Sqrt()const
{
    if(*this<0)return -1;
    if(*this<=1)return *this; bign l=0,r=*this,mid; while(r-l>1)
    {
        mid=(l+r)/2;
        if(mid*mid>*this)
            r=mid;
        else
            l=mid;
    }
    return l;
}

bign::~bign()
{
}


const int maxn = 2*1e2 + 8;
bign val[maxn], ans[maxn];

int main()
{
    #ifdef LOCAL
    freopen("a.txt", "r", stdin);
    //freopen("b.txt", "w", stdout);
    #endif // LOCAL
    val[1] = 1;
    val[2] = 2;
    val[3] = 6;
    for(int i = 4; i < maxn; i++){
        val[i] = val[i-1] * 3;
    }
    ans[3] = 3;
    for(int i = 4; i < maxn; i++){
        ans[i] = ans[i-1] * 3;
    }


    int T, n;
    scanf("%d", &T);
    while(T--){
        scanf("%d", &n);
        if(n < 3) printf("-1n");
        else{
            for(int i = 1; i < n; i++){
                cout<<val[i];
                printf("n");
            }
            cout<<ans[n]<<endl;
        }
    }
    return 0;
}

 


非特殊说明,本博所有文章均为博主原创,未经许可不得转载。

https://www.prolightsfxjh.com/

Thank you!

                                                                                                                                             ------from ProLightsfx

- THE END -

ProLightsfx

11月15日16:33

最后修改:2024年11月15日
0

非特殊说明,本博所有文章均为博主原创,未经许可不得转载。

共有 0 条评论