King's Order 数位dp
Source
The question is from BC and hduoj 5642.
My Solution
数位dp
状态: d[i][j][k] 为处理完i 个字符 , 结尾字符为′a′+j , 结尾部分已重复出现了 k 次的方案数;
边界:d[1][j][1] = 1; (1 <= j <= 26 );
状态转移方程:看代码吧;
#include
#include
#include
using namespace std;
const int maxn = 2000+6;
const int HASH = 1000000007;
long long d[maxn][27][4];
int main()
{
int T, n;
scanf("%d", &T);
while(T--){
scanf("%d", &n);
memset(d, 0, sizeof(d));
for(int j = 1; j <= 26; j++){
d[1][j][1] = 1; //d[0][j][2] = 0; d[0][j][3] = 0;//they are not needed.
//d[1][j][2] = 1; these two are wrong and not needed.
//d[2][j][3] = 1; these two are wrong and not needed.
}
for(int i = 1; i <= n; i++){
for(int j = 1; j <= 26; j++){
d[i][j][2] = (d[i][j][2]+d[i-1][j][1])%HASH; // 2
d[i][j][3] = (d[i][j][3]+d[i-1][j][2])%HASH; // 3
for(int k = 1; k <= 26; k++){
if(j != k) d[i][j][1] = ( ( (d[i][j][1]+d[i-1][k][1])%HASH + d[i-1][k][2])%HASH + d[i-1][k][3])%HASH;
}
}
}
long long ans = 0;
for(int j = 1; j <= 26; j++){
for(int k = 1; k <= 3; k++ ){
ans = (ans + d[n][j][k]) %HASH;
}
}
cout<<ans<<endl;
//printf("%lldn", ans); this website : %I64d
}
return 0;
}
非特殊说明,本博所有文章均为博主原创,未经许可不得转载。
https://www.prolightsfxjh.com/
Thank you!
------from ProLightsfx
非特殊说明,本博所有文章均为博主原创,未经许可不得转载。
如经许可后转载,请注明出处:https://prolightsfxjh.com/article/bestcoder-round-75-kings-order-dp/
共有 0 条评论